Alexander Hulpke Professor - Interim Chair

Office: Weber 206B

Phone: (970) 491-4288

Website: http://www.math.colostate.edu/~hulpke/

Google Scholar: https://scholar.google.com/citations?user=7LBTkb8AAAAJ&hl=en&oi=ao

Education

  • Dr. rer. nat, RWTH Aachen, Germany, 1996
  • Diploma in Mathematics, RWTH Aachen, Germany, 1993

About

(Computational) Group Theory, Group Actions, Combinatorics, Number Theory, Symbolic Computation. Co-Author of the system GAP

Publications

  • Proving infinite index for a subgroup of matricesAlexander J. Hulpke AMS.
  • The perfect groups of order up to two millionAlexander J. Hulpke Math. Comp..
  • Universal covers of finite groupsHeiko Dietrich, Alexander J. Hulpke Journal of Algebra, 2021.
  • Experimenting with Symplectic Hypergeometric Monodromy GroupsA. S. Detinko, D. L. Flannery, Alexander J. Hulpke Experimental Mathematics.
  • The strong approximation theorem and computing with linear groupsA.S. Detinko, D.L. Flannery, Alexander J. Hulpke Journal of Algebra, 2019.
  • Algorithms for Experimenting with Zariski Dense SubgroupsA. S. Detinko, D. L. Flannery, Alexander J. Hulpke Experimental Mathematics, 2018.
  • Calculating Subgroups with GAPGroup Theory and ComputationAlexander J. Hulpke Springer Singapore, 2018.
  • Constructing Groups of ‘Small’ Order: Recent Results and Open ProblemsAlgorithmic and Experimental Methods in Algebra, Geometry, and Number TheoryBettina Eick, Max Horn, Alexander J. Hulpke Springer International Publishing, 2018.
  • Constructive Membership Tests in Some Infinite Matrix GroupsProceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computation - ISSAC '18Alexander J. Hulpke ACM Press, 2018.
  • Finding intermediate subgroupsAlexander J. Hulpke Portugaliae Mathematica, 3, 2018.
  • Imprimitive permutations in primitive groupsJ. Araújo, J.P. Araújo, P.J. Cameron, T. Dobson, Alexander J. Hulpke, P. Lopes Journal of Algebra, 2017.
  • Zariski density and computing in arithmetic groupsA. Detinko, D. L. Flannery, Alexander J. Hulpke Mathematics of Computation, 310, 2017.
  • Connected quandles and transitive groupsAlexander J. Hulpke, David Stanovsky, Petr Vojtechovsky J. Pure Appl. Algebra, 2, 2016.
  • GAP, 4.8.5Alexander J. Hulpke, Many More The GAP Group.
  • Translating MAGMA code to GAPAlexander J. Hulpke Computeralgebra Rundbrief, 2016.
  • Algorithms for arithmetic groups with the congruence subgrouppropertyAlexander J. Hulpke, A. S. Detinko, D. L. Flannery J. Algebra, 2015.
  • Aristotle’s problemAlexander J. Hulpke, Victor Pambuccian Beitr. Algebra Geom., 2, 2015.
  • Constructing All Composition Series of a Finite GroupProceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic ComputationAlexander J. Hulpke ACM, 2015.
  • Software for groups: theory and practiceMathematical software—ICMS 2014Alexander J. Hulpke Springer, Heidelberg, 2014.
  • Calculation of the subgroups of a trivial-fitting groupISSAC 2013—Proceedings of the 38th InternationalSymposium on Symbolic and Algebraic ComputationAlexander J. Hulpke ACM, New York, 2013.
  • Computing conjugacy classes of elements in matrix groupsAlexander J. Hulpke J. Algebra, 2013.
  • Computing generators of groups preserving a bilinear form over residue class ringsAlexander J. Hulpke J. Symbolic Comput., 2013.
  • All finite generalized tetrahedron groups IIComputational and combinatorial group theory and cryptographyBenjamin Fine, Alexander J. Hulpke, Gerhard Rosenberger Amer. Math. Soc., Providence, RI, 2012.
  • Computing Hall subgroups of finite groupsBettina Eick, Alexander J. Hulpke LMS J. Comput. Math., 2012.
  • The number of Latin squares of order 11Alexander J. Hulpke, Petteri Kaski, Patric R. J. Östergård Math. Comp., 274, 2011.
  • The Tits alternative for short generalized tetrahedron groupsB. Fine, Alexander J. Hulpke, V. große Rebel, G. Rosenberger, S. Schauerte Sci. Ser. A Math. Sci. (N.S.), 2011.
  • An Introduction to Computational Group TheoryAlexander J. Hulpke Oberwolfach Reports, 2010.
  • Polytopes derived from sporadic simple groupsMichael I. Hartley, Alexander J. Hulpke Contrib. Discrete Math., 2, 2010.
  • All finite generalized tetrahedron groupsBenjamin Fine, Miriam Hahn, Alexander J. Hulpke, Volkmar große Rebel, Gerhard Rosenberger, Martin Scheer Algebra Colloq., 4, 2008.
  • Normalizer calculation using automorphismsComputational group theory and the theory of groupsAlexander J. Hulpke Amer. Math. Soc., Providence, RI, 2008.
  • The Tits alternative for spherical generalized tetrahedron groupsBenjamin Fine, Alexander J. Hulpke, Volkmar große Rebel, Gerhard Rosenberger Algebra Colloq., 4, 2008.
  • Finite Geometries, Groups, and ComputationAlexander J. Hulpke Walter de Gruyter, 2006.
  • Constructing transitive permutation groupsAlexander J. Hulpke J. Symbolic Comput., 1, 2005.
  • On orbifold coverings by genus 2 surfacesAlexander J. Hulpke, Tapani Kuusalo, Marjatta Näätänen, Gerhard Rosenberger Sci. Ser. A Math. Sci. (N.S.), 2005.
  • Efficient simple groupsColin M. Campbell, George Havas, Alexander J. Hulpke, Edmund F. Robertson Comm. Algebra, 10, 2003.
  • GAPComputer algebra handbook. Foundations, applications, systems.Thomas Breuer, Alexander J. Hulpke Springer, 2003.
  • Total ordering on subgroups and cosetsProceedings of the 2003 International Symposium on Symbolic and Algebraic ComputationAlexander J. Hulpke, Steve Linton ACM, New York, 2003.
  • Efficient simple groupsColin M. Campbell, George Havas, Alexander J. Hulpke, Edmund F. Robertson Comm. Algebra, 2, 2002.
  • Efficient simple groupsColin M. Campbell, George Havas, Alexander J. Hulpke, Edmund F. Robertson Comm. Algebra, 9, 2002.
  • Computing the maximal subgroups of a permutation group. IGroups and computation, III (Columbus, OH, 1999)Bettina Eick, Alexander J. Hulpke de Gruyter, Berlin, 2001.
  • Short presentations for three-dimensional unitary groupsAlexander J. Hulpke, Ákos Seress J. Algebra, 2, 2001.
  • Representing Subgroups of Finitely Presented Groups by Quotient SubgroupsAlexander J. Hulpke Experimental Mathematics, 3, 2001.
  • Conjugacy classes in finite permutation groups via homomorphic imagesAlexander J. Hulpke Math. Comp., 232, 2000.
  • Computing subgroups invariant under a set of automorphismsAlexander J. Hulpke J. Symbolic Comput., 4, 1999.
  • Construction of $Co_3$. An example of the use of an integrated system for computational group theory!!!Groups St. Andrews 1997 in Bath, IIAlexander J. Hulpke, Steve Linton Cambridge Univ. Press, Cambridge, 1999.
  • Galois groups through invariant relationsGroups St. Andrews 1997 in Bath, IIAlexander J. Hulpke Cambridge Univ. Press, Cambridge, 1999.
  • Techniques for the computation of Galois groupsAlgorithmic algebra and number theory (Heidelberg, 1997)Alexander J. Hulpke Springer, Berlin, 1999.
  • Computing normal subgroupsProceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock)Alexander J. Hulpke ACM, New York, 1998.
  • On transitive permutation groupsJohn H. Conway, Alexander J. Hulpke, John McKay LMS J. Comput. Math., 1998.
  • Block Systems of a Galois GroupAlexander J. Hulpke Experimental Mathematics, 1, 1995.