Abstract: A rational function $f(z)$ with complex coefficients defines a holomorphic map from the Riemann sphere to itself. Some aspects of the global dynamical behavior of f can be predicted from the orbits, under f, of the critical points of f (i.e. points at which the derivative of f vanishes). If every critical point of f has a finite orbit, then f is called post-critically finite (PCF).

Suppose ϕ is a PCF branched covering from a topological two-sphere to itself. One can ask: is ϕ homotopic to a PCF rational function from the Riemann sphere to itself? Thurston answered this question by producing a holomorphic dynamical system $T(\phi)$ induced by ϕ on the Teichmüller space of complex structures on the topological sphere. Koch found that $T(\phi)$ descends to an algebraic dynamical system $H(\phi)$ on the moduli space of configurations of points on the Riemann sphere.

I will introduce 3(+) interconnected dynamical systems: topological (ϕ), holomorphic ($T(\phi)$) and algebraic ($H(\phi)$).