Nathan Kaplan

Department of Mathematics - University of California, Irvine

Monday, March 23, 2020
Time: 4:00 p.m.
Location: Weber 223
Title: Codes from Families of Polynomials over Finite Fields

Abstract: What is the maximum number of points in the projective plane over a finite field of size q such that no three points lie on a line? More generally, what is the maximum number of points in the n-dimensional projective space over $F_{-} q$ such that no $n+1$ points lie in a hyperplane? How many of the $q^{\wedge}\{10\}$ homogeneous cubics in x, y, z have exactly $q+2$ zeros? How many of the $q^{\wedge}\{20\}$ pairs of these polynomials have exactly k common zeros?

We will explain how these questions, and many others, can be phrased as problems about certain error-correcting codes. We will emphasize connections between coding theory, classical algebraic geometry, combinatorics, and number theory. We will start from the basics- no previous familiarity with coding theory will be assumed.

